ne : ANL-7063

: f Avgonne Aational Laboratory

SOME TOPICS IN STATISTICAL MECHANICS
; A Series of Lectures by

B. R. A. Nijboer




LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, 1 or ful of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission’’ includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

Printed in USA. Price $3.00. Available from the Clearinghouse for Federal
Scientific and Technical Information, National Bureau of Standards,
U. 8. Department of Commerce, Springfield, Virginia




ANL-7063

Physics

(TID-4500, 46th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

SOME TOPICS IN STATISTICAL MECHANICS

(Molecular distribution functions, cluster expansions, etc.)
A Series of Lectures by

B. R. A. Nijboer

Solid State Science Division

June 1965

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission



O TR
IR A




I. INTRODUCTION
AT
B

TABLE OF CONTENTS

Literature

The Paper of F. Zernike and J. Prins . . . .. ... ......

II. ENSEMBLES AND THE LIOUVILLE THEOREM. ... .......

III. MOLECULAR DISTRIBUTION FUNCTIONS. . . .. ...... ...

IV. SOME PROPERTIES OF THE PAIR DISTRIBUTION

T U AT OIS W e o e AL B0 oo e e Gt o DEB G0 S0 00D
AR h et Eloiationsiof State NUREE SRR L NI R R
B. The Function g(}’) as the Functional Derivative of the

RireesEaeroyase i ol s Ll s e e e

C. A System of Integral Equations for the Molecular
Distribution Functions, . . - s s s s « s = o o o o s s o o o s oo o
1. e e tarchy i S SR AR R
2 The Superposition Approximation . .. .. ... .. ...
D. The Fluctuation Integral:
1+ Pf{g(?)—l}dr ..........................
= Al e
E. The Ingegral: /g( ) l s AR S F 5N D p o
Y2
V. THE ONE-DIMENSIONAL SYSTEM . ... ...............

VI. THE MAYER CLUSTER EXPANSIONS. . ... ... .........:

A

Moo

(e ver Boliations S F IRt SO
AN f e rriative Method st o sl S i e e e e
2.  The Grand Canonical Ensemble. . . . . . .. ... .....

Virial Expansion of the! Pressure . . . .. .. ...« ...
A Simplified Cluster Expansion. . . . . ... .. ... ...
Virial Expansion of the Pair Distribution Function. . . ...

Computations and Checks on Approximate Expressions
for the Pair Distribution Function. . . ... .. .........

NG L BDEMENTS e cis e o o e e o e e el

1L

16

20
20

23

25
25
28

29

31

36

41

41
46
5l

54
59
61

64

68






SOME TOPICS IN STATISTICAL MECHANICS

(Molecular distribution functions, cluster expansions, etc.)

by

B. R. A. Nijboer

I. INTRODUCTION

A. Literature

These lectures will deal mainly with the pair distribution function, its

definition, its properties, and its cluster expansion. The principal aim of
these lectures is to give enough basic information to enable anyone who is
interested in specific applications to find his way in the recent literature.

Let me first mention some books and review articles where one may
find more about the subject we are going to treat:

1)

1. Z. Fisher, Statistical Theory of Liquids, The University of
Chicago Press (1964); translated from the original Russian edi-
tion, with a supplement by S. A. Rice and P. Gray.

J. de Boer, Molecular Distribution and Equation of State of Gases,
Reports on Progress in Physics 12, 305 (1949).

E. G. D. Cohen, ed., Fundamental Problems in Statistical
Mechanics, NUFFIC Summer School, 1961, North Holland Pub-
lishing Company, Amsterdam (1962).

G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical
Mechanics, Proc. Summer Seminar, Boulder, 1960, Am. Math.

Soc., Providence (1963).

G. E. Uhlenbeck, Statistical Physics 3, Brandeis Summer Insti-
tute, 1962, W. A. Benjamin, Inc., New York, (1963).

J . de Boer and G. E. Uhlenbeck, ed., Studies in Statistical
Mechanics, Vols. I and II, North Holland Publishing Company,

Amsterdam (1962 and 1964).

H. L. Frisch and J. L. Lebowitz, ed., The Equilibrium Theory of
Classical Fluids, a lecture note and reprint volume, W. A. Ben-
jamin, Inc., New York (1964).

Further, of course, one may find some of our topics treated in the usual text-
books on statistical mechanics, among which I wish to mention in particular:



T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956)-

J. E. Mayer and M. G. Mayer, Statistical Mechanics, John Wiley and
Sons, Inc., New York (1940).

A. Miinster, Statistische Thermodynamik, Springer, Berlin (1956).

B. The Paper of F. Zernike and J. Prins

Before starting with a more systematic treatment, I would like to give
a short review of the classical paper by F. Zernike and J. Prins, Z. Physik
41, 184 (1927). The reasons for doing this are: a) In this paper, the radial
distribution function g(r) was first introduced in theoretical physics, and its
importance for the theory of scattering was clearly realized. b) The g(r)-
function was calculated here for a particularly simple system, viz., the one-
dimensional hard-sphere system. This system is one of the very few for
which g(r) can at all be computed rigorously.

wave vector of the incoming plane wave is ky, and we want to calculate the
differential cross section for scattering in a direction given by the outgoing
wave vector k (k=kg). Let the scattering amplitude for one atombe a. For
the differential cross section per particle, we have

o(6) = N~'a? Z Z eiz'(;n_;m)- (1-1)

\
|
Let us consider the scattering of X rays by a monatomic fluid. The
o m ‘
Here, £ = kg - k, N is the number of particles, and ;n and ;m are the posi-

tions of particles n and m respectively. The exponent T (;n - ;m) gives the
phase difference between the waves scattered at n and m. (see sketch below.)

=

The expression (I-1) must be avera i
_ ged over the configurati
scattering system. One obtains, when taking the terms with i = r:lo::ac:.ft -

o(0) = a2{1+ p[(g(¥) - 1} ei®FdT}. 5



This is the famous formula of Zernike and Prins. Here 0 = N/V is the av-
erage density (number of particles per unit volume), and g(;lis the pair dis-
tribution function, somewhat loosely defined as follows: pg(r) is the average
densxt_Y at £0s1t10n T if we know that a particle is at the origin, or also

g(rl - rz drl/V er/V is the probability of f1nd1ng particle 1 in volume ele-
ment drl and at the same time particle 2 in drz The pair distribution func-
tion measures the correlation between pairs of particles. For a system of
nomnteracting particles (ideal gas), g(?) = 1 for all ¥, while in any fluid,
g( ) approaches’ 1 for large T. We have subtracted 1 from g(a) in the above
formula. This term amounts to 8W’3P5(K) which is different from zero only
for 6 = 0. It represents the unscattered beam. The 1ntegra.1 may now be

extended over an infinite volume. If we express 0(8) or ok ) in units a®
(differential cross section of one isolated particle), we see that o(x) - 1is
the Fourier transform of p( ( )- 1). Conversely, g(r) may, in principle, be
obtained from the X-ray diffraction pattern.

I would like to add a few remarkshere. In the derivation, we sup-
posed the particles fixed and then averaged over their configuration with
the true statisticaldistribution function. Nowadays one calls it the static
approximation. It is valid for X rays, because in this case the energy trans-
fer can be neglected compared to the primary energy. For slow-neutron
scattering, the primary energy and the energy transfer are of the same
order. In this case, the static approximation is no longer valid. One can
then investigate the more detailed scattering function S(c, w), where 7w is
the energy transfer. One can show that for

+ca
f S(k, w) dw,
00

the static approximation still holds. However, this integral is no longer ex-
actly equal to the differential cross section o(6), because for fixed 6, k is no
longer a constant vector.

For the case of scattering of light, where the wavelength A is much
larger than the distance over which glr) -1 1s d1fferent from zero (except
near critical conditions), one may replace il T by 1. One then has

TGP < 1t p [e)-1yar. (1-3)
We will show later that the right-hand side is

<np?>- <ng>?
'————"Q < = kT(ap) = XT.

i pf{g(r)—l}dr = e T



This is the formula of Ornstein and Zernike. It expresses our integral in
terms of the density fluctuations (2 is an arbitrary volume, containing
many particles, but small compared to the total volume); XT is the relat?ve
isothermal compressibility of the system, i.e., the isothermal compressi-
bility divided by that of an ideal gas of the same density.

Let us now calculate g(x) for a one-dimensional system of hard
spheres or rather hard rods. Suppose we have a line of length L upon which
are N rods, each of length a. The position of each rod is represented by its
center. We now ask for the probability of finding another center at a distance
between x and x + dx from a given center. This is clearly pg(x) dx. One has
g(-x) = g(x) and g(x) = 0 for x < a. For a< x < 2a, there is, at most,
one particle on the length x; for ka < x < (k+1) a, the number of particles
on the line of length x (starting from a given particle) is at most k. One may
now put

glx) = % gic(x), (1-5)

where Pgk(x) dx is the probability that the kth atom (numbered from the given
particle at x = 0) may be found between x and x + dx. For any x, the num-
ber of terms in the sum (I-5) is finite. It is now convenient to look only at
the intervals between particles. If we subtract the volume of the atoms, we
have a line of Length L - Na, and hereupon N points distributed at random,
as shown below:

1
>a

0

a
=
1

NP‘}N

|

L - Na

©.
—
™

Our problem is now analogous to that of the distribution of free paths in gas
theory. The probability of finding an interval of length x' is (Clausius)

] § st
ge/t (1-6)

when L - » and N - » in such a way that (L-Na.)/N =0 We sce'that h B
the mean length of the interval.
Let us recall briefly the derivation of (I-6). The probability of find-

ing a given point on a segment of length x' is x'/(j_,- Na). The probabilit
that this segment will contain no particles is b



1 N |N
X X
(I'L—Na) b (IN_z) :

This expression approaches e'x'/z when N -®. The probability then of
finding an interval with length between x' and x' + dx' is ) ¢ dx'/ﬂ.

From (I-6), it follows that the probability that the sum of two ad-
jacent intervals lies between x' amdrasl SR E

x!
Gl _l_e_xn/[/_l_e_(xl_xll)/ﬂ dx" :_X_e-x‘/,@ dx!'.
bl ) £

Similarly, one finds for the probability that the total length of k adjacent
intervals is between x' and x' + dx'

k- i
pgr(x') dx' = L i e-x/[/ d=llt (1-7)
25k - 1)!

One verifies that

- d

xl
z pg(x') dx' = o
k=1

as it should.

Returning now to the problem of the rods, we have at each point to
add in a length a. For gk, one has x = x' + ka, and therefore

k=1
e 2 lekd/ gor 5 5 x
k-1)!

1

pg (%)

for x < ka;

so that finally

1

- a Z
e %{e-w-aw $ 2222 oeeza)/h 4 (—}‘—% o (x-32)/8 + } (1-8)

where the sum should be continued as long as the exponents are negative.
This is the result of Zernike and Prins. In their paper,they plotted g(x) as
a function of x for the cases f = 0.5, 0.25, and Dol (l/p = § + a is taken to
be 1). The smaller £, the higher-peaked is g(x) and the farther do the cor-
relations extend.
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The expression (1-8) for pg(x) is a rather complicated one. Ho:e"er»
X § o
it is worth mentioning that its Laplace transform is very simple. We hav

namely,

e-ska

-9
Pgy(s) = e~ 5% pgy(x) dx = ITERS (1-9)

and therefore

e-ska i

pg(s) Ef e 5% pg(x) dx = z I+ Tk - GIFDesm-1 (1-10)
0 1

From
im cE(s) = 7
&3 P8 = ray
it follows that
jlcl_r)xgopg(x) =7 T

Furthermore, in (I-10) it is easy to go to the limit £ — 0, which is not so
simple in g(x). We have

Lim pE(s) = e

from which it follows that

Jim pgls) = kzl 8(x - ka). (1-11)

One sees here the transition from gas to liquid to crystal. However, this
transition is perfectly continuous; in one dimension,there are no phase
transitions. This unconventional method to derive the expression for g(x)
cannot, unfortunately, be applied to other systems or tothe three-dimensional
hard-sphere system. We shall now turn to a more systematic treatment in
terms of statistical mechanics of the pair distribution function. We shall see
that starting from the general definition it is also possible to derive the

above result (I-8) for the one-dimensional hard- sphere system, though the
derivation is rather more complicated.



II. ENSEMBLES AND THE LIOUVILLE THEOREM

Let us start recalling some basic concepts of statistical mechan-
ics. The aim of statistical mechanics is to establish relations between
the observable macroscopic properties of large systems (containing a
very large number of atoms) and the properties of the particles and their
interactions as given by atomic theory. Statistical mechanics tries to
provide an atomistic foundation of the phenomenological laws established
in thermodynamics and other fields of macroscopic physics.

A macroscopic quantity of matter contains of the order of 10%°
atoms. Suppose we may consider the system classically; then from pre-
cise positions and momenta of all particles at time t = 0, one could, in
principle, calculate the exact state of the system at some other time t.
We do not have this detailed information, and the computations would be
hopelessly complicated. Further, we are not really interested in the po-
sition and velocity of every atom at some later time. We are only anters
ested in a relatively small number of so-called macroscopic qguantities
which can be measured. Consider, for example, the pressure of a gas.
The forces exerted by the molecules on the walls of the container vary
extremely rapidly. We only want to know some average of this force over
small space and time regions. It is evident that for this purpose, statis-
tical arguments have to be invoked.

We will mainly restrict ourselves to classical statistical mechan-
ics and to systems in equilibrium. Let us suppose we have a system con-
sisting of a very large number N of identical molecules, the motions of
which can be described by a Hamiltonian,

Z_— + V(T1, T2 ..r TN)- (1-1)

The state of the system is then completely specified by a point in the
6N-dimensional phase space, the so-called I'-space (Ehrenfest). The
representative point describes a path in I'-space according to the Hamil-
tonian equations of motion,

eaie i
qk ‘ap—k
N L (11-2)
_.2m
Pr aqk
o

11
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This path is of extreme complexity; if two molecules collide, the repre-
sentative point jumps from one region to another. Since in each point t‘he
direction of the tangent to the path is uniquely given by the above equations
of motion, a path can never cross itself. If the system is isolated, the
total energy is conserved and the phase point moves on the so-called
energy surface.

In statistical mechanics, one now considers not one system, but one
imagines a very large number of identical systems, which is called an

ensemble. The systems are supposed to differ only in phase; i.e., the ini-

tial conditions are different. We have, therefore, a cloud of phase points
moving in I'-space. Two orbits never cross. An ensemble is characterized
by a density pilq:, ..., p3N,t), which we suppose to be normalized; i.e.,

1

fp(ql, c+ie Popps tH g Ll Ay = 1. (11-3)

The function p cannot be an arbitrary function subject to (II-3). First we
have p = 0, and further

op d
Sl et z A =0, 1I-4
e +g o9 g K 9Pk ) e

This is the equation of continuity, expressing the fact that the increase of
the number of phase points in an arbitrary volume element of phase space
during some time interval must be equal to the number of phase points
entering through its boundary during that time. If we integrate (II-4) over
all phase space, we find that

fp(ql’ ceey PsN,t) dql dpSN

remains constant in time, so that if (II-3) holds at any moment, P will
stay normalized in the course of time. Equation (11-4) may be written

d¢ )
qu aq zpk +Z < L pk) 03 (11-5)

Say  Spy

The last term cancels because of the equations of motion (II-2). We find,
therefore,

dp dp . 9p ] 9
d—tEE+qu-—+Zpk_Pk:-—tp+(p,H)=0, (11-6)



where

_ dp dH Op JH
o )
k k k k

is the Poisson-bracket. This is the equation of Liouville. It states that p
is conserved as we move with the phase points, or also that the phase
points move as an incompressible fluid. It is a consequence of the equa-
tions of motion. One might also say that the extension in phase space is
conserved; i.e., if we consider a cloud of given volume in I'-space and
follow its motion, then the volume occupied at some later time is equal in
size, though generally very different in shape. Liouville is sometimes
expressed as

9(qy, ---» P3N)
9[a1(0), ..., p,(0)]

=y (II‘7)

which is equivalent to the above formulation.

The fundamental assumption of statistical mechanics is that the
macroscopic quantities as measured on a system correspond to the en-
semble average taken over a suitably chosen ensemble,

<Hqy o Py) > = ffp dq, ... dpyy- (11-8)

For a system in equilibrium, where the macroscopic properties do not
depend on time, p may not explicitly depend on time; i.e., the equilibrium
ensemble should be stationary.

According to Liouville, p remains constant when moving with the
phase points, so that for a stationary ensemble p(ql, Rl p3N) should be
chosen at some initial time in such a way that it is the same all along the
orbit. This means that for a stationary ensemble, p may depend on the
integrals of motion only. In practice, one only considers the case that p
depends exclusively on the value of the total energy E. Other integrals of
motion are usually not known. The best-known stationary ensembles are:

(a) Microcanonical ensemble (Boltzmann). Here, p is taken to
be a constant between two neighboring energy surfaces and zero everywhere
else. If the difference in energy between the surfaces approaches zero,
one has a so-called surface ensemble with surface density «|grad i
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(b) Canonical ensemble (Gibbs). Here,

oih M

p = constant - e kT

(c) Grandcanonical ensemble (also introduced by Gibbs). We will
come back to this later.

For most practical purposes, the various ensembles mentioned
above lead to equivalent results. Usually the microcanonical ensemble is
considered to represent an isolated system for which the energy is con-
served, and the canonical ensemble is considered to represent a system in
contact with a large heat bath. Here the temperature is fixed and the
energy fluctuates. The canonical ensemble is often much more convenient
than the microcanonical, because in the latter the integration over phase
space necessary to compute averages has to be restricted to the energy
surface, which may be rather awkward. Darwin and Fowler consider the
canonical ensemble as just a mathematical device to make the calculation
of averages easier. In the canonical ensemble, the actual spread in
energy is extremely small for large systems; that is, the overwhelming

number of systems has an energy very close to the mean value. This is
because for a large system the volume of phase space between two suc-

cessive energy shells increases with a large power of E. Let us take as
an example the average energy. In the canonical ensemble, it can be ex-
pressed as

=3
<E> = {fQ(E) e'E/deE} ; fEQ(E) R (11-9)

where Q(E) dE is the volume of phase space between the energy shells

E and E + dE. For an ideal gas, one easily verifies that Q(E) « E(/2)N-1
Now the function EYe E/KT nas for large ¥ a very sharp maximum for

E = VkT. If we put E = VkTx, then

v
= H o 1
B AmET (v_kT) fnl e
e
Now xe!™® = 1 for x = 1, and xe!"*X< 1 for all other positive x. The
large power of xe! ™® makes the maximum extremely sharp. In this sense,
the energy of the system becomes a unique function of its temperature.

In the following, we will mainly use the canonical ensemble. Let us
conclude this chapter with a few remarks.



Remarks

1. We derivedthe equation of Liouville for the change with time of the
density of phase points in I'-space. This equation in itself has nothing to
do with statistical mechanics; it belongs to mechanics proper. It is per-
fectly reversible in time, i.e., invariant for the transformation t - -t. One
of the fundamental problems in statistical mechanics is how to arrive from
Liouville to an irreversible equation (like the Boltzmann equation or the
master equation) from which the well-known irreversible behavior of actual
macroscopic physical systems can be explained. For a very clear dis-
cussion of the justification of ensemble theory in equilibrium statistical
mechanics and for an explanation of the apparently paradoxical irrevers-

ible behavior of macroscopic systems, I refer to Uhlenbeck and Ford,
(Ref. 4) mentioned in Section I-A.

2. For any functionin phase space f(qy, ..., PN, t) we have

L R S PR
d9y OPx  OPy O9x

=5 ) Sk == _a;+(f,H) =i Iif; (II-10)

where
e} o FI dH 9 )
by s =0 —— i s e
ot g’ (apk day 99y Opy

is called the Liouville operator. The equation (II-10) can be integrated
formally giving

£(t) = elt £(0), (=)
for then

df _ Lt E
= e £(0) =" Lif(t):

15
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III. MOLECULAR DISTRIBUTION FUNCTIONS

Let us consider an arbitrary stationary ensemble. We have intro-
duced the density pN(;:, e EN), so that pdT is the probability of finding
a system of the ensemble in the volume element d7 of I'-space. Accord-
ing to the fundamental assumption of statistical mechanics, this also
represents the probability of finding, during the time of observation, our
physical system in the element dail s d_ﬁN of I'-space, i.e., the proba-

i -

bility of finding particle 1 in d_fldpl, particle 2 in drzd_};z,etc.,in K -space
(u-space is the six-dimensional phase space of one molecule). From ppn
we can, in principle, calculate all macroscopic properties of our system;
PN still characterizes the system in great detail. Usually, however, one
does not need such detailed information; one usually wants to average only
quantities which are a sum of one-particle or two-particle functions.
These averages can be calculated as soon as one knows reduced distri-
bution functions, e.g., one-particle or two-particle distribution functions.
We shall soon meet with examples.

We then introduce reduced distribution functions, e.g.,
B £, 5,.8,.0,,8,) = pr(?l, ..., PN) 4T, ... dTNdP, ... dpy., (11-1)

which is the probability of finding three numbered molecules 1, 2, and 3
at d—fld_ﬁl, d—r'zd_p;z, and d?3d§3, respectively, not regarding where the other
molecules are. If all molecules are of one kind, it is useful to introduce,
instead of the specific distribution functions considered above, the so-
called generic distribution functions P, where the molecules are left
unspecified, These are

Pn(T o BN) = N BrlE s Brphs
and (mI-2)
e o N! e -
B ) e pUT, R

(N -m)!

where N.‘/(N -m)! is the number of ways in which m molecules can be
chosen out of N. In particular,

P,(F), 1, Py By) = NIN-1) p,(F, 5, 5,. 5,),

(XE=3)



Finally, by integrating over momenta, one obtains either specific
or generic distribution functions in configuration space only. FEor the
generic functions in particular, we have

e e G R

fonlE, o Bg) B, .., S,
and L (111-4)

—

o e L el R

N‘ .
(I\I—rn— fpm 1,...,pm) dpl ...dpm. J

From these definitions, it will be obvious that the normalization of these
functions is given by

N|
e dE : (111-5)

S oo o) s i =
Also, it is easy to verify that, e.g.,
(i) = =i f W, ) oy = N-2) andr B GEaG: (111-6)
and

o 1 = oo 1 —

nl(rl) = g fnz(rl’rz) drz = (_N_—IT aner ey d—fN, (111-7)
or generally

tm(T - Fm) = Y- m fnmﬂ e Ry (111-8)
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nz(?l, ?z) is called the two-particle (or sometimes pair-) distribution

function; n (T}) is the number density. All this was perfectly general. Let
us now specialize to a canonical ensemble. Here we have

oelE o) = BN N 27 & PR B, (111-9)

Here H is the Hamiltonian, B = l/kT, and the factor in front with

1 =IRIE e
Ly = (SRR L ! III-10
N =T N Jo e . (1I-10)
is a normalizing factor. [The insertion of the factors N! and nN (h is
Planck's constant) will be explained below.] The integration over momenta
gives (ZTkaT)3N Z, so that [cf. (III-4) and (II-1)]

? 1 e—ﬁV(rl,...,rN)

“N(rr L Iyg) = o (IIr-11)

with
N /2 - -
! e 2 1 =B, O TR ey =
o - (ogm)  avew SR
(III-12)
As a consequence, we have [cf. (III-6) and (III-7)]
e e 1l =BV -

n3( 1,rz,rs) = (N'3)!QN e B dry .... it (III-13)

A R fe_ﬁvd_' dr

SRR (N_Z)!QN T, ... dryp, (I1I-14)
and

sile) = I [ =RV s

PR TSIy JE T dn e dine (1m1-15)

ZjN is called the partition function, Qp the configurational partition func-
tion. These are important concepts, Because from them, all thermodynamic

properties can be calculated via the (Helmholtz) free energy F = U - TS,
which is given by I T



F = -kT log Zy = -(3/2) NKT log (-‘Zﬂ—r’zﬂ)

-kT log Q.  (III-16)

This correspondence between statistical and thermodynamic quantities can
be shown to hold in various ways; one of them we will mention further on.
The factors 1N and N! in the definition (I1I-10) of Zy have the following
motivation. As to h3N, a factor of this dimension is needed to make ZN
dimensionless; by putting in h3N (h is Planck's constant), one obtains the
same result for F as the classical limit of quantum statistics. N! is
inserted so that the free energy becomes an extensive quantity (or, in other
words, to make the entropy additive or to avoid the Gibbs paradox).

As a matter of fact, this correspondence with thermodynamics (or
with macroscopic theory) has only sense in the so-called thermod namic
limit; i.e., where N = ®, V(volume) — ®in such a way that p = NiV remains
constant. Actually, one can prove, under certain restrictions for bhiesmte s
actions, that in this limit

1
~ log Z

exists and is independent of N. It then represents -l/kT times the free
energy f per particle; i.e., in this limit,

Nt
(ST fe'ﬁH dr, ... dpy. (1II-17)
N!h3N L

The first proof of this statement was given by L. Van Hove (Physica, 1948;
in this paper, it was also shown that p = -(3£/9v)T is a nonincreasing
function of the volume per particle v). Later it was realized that the proof
contained certain defects. Recent considerations on this topic are due,
among others, to D. Ruelle (1963) (cf., e.g., Ref. i)

In the definition of the distribution functions, one usually either ex-
plicitly or implicitly considers the thermodynamic limit. In that limit, one
has

—

n (?,?Z) = ng(;z_ S (11I-18)

with g(@) = 1. [Compare, e.g., (111-5).] Noticethat Hill in his book defines
g by n, = ng for finite N. In his case, then, g(®) = 1+ O(I/N).]

19
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IV. SOME PROPERTIES OF THE PAIR DISTRIBUTION FUNCTION

In the previous chapter we have given the definition (with the canon-
ical ensemble) of the molecular distribution functions. We will now deri_:/e
some important properties of, in particular, the pair distribution 15 (X125
[or of g(T)]. The Hamiltonian, which in general was given by [cf. (II-1)]

-

2
P; - - -

1
H = Z g 1 V{F Fargon P
S

reduces, in the important case that the potential energy is a sum of pair
interactions, to

H=) i) Y o(Fi)- (Iv-1)

A. The Equations of State

The macroscopic energy of our systems (i.e., the average internal
energy) is for the Hamiltonian (IV-1) given by

el
o= (N1h3NzN)'l fe-ﬁH< o x Z ¢('r’ik)> dr,...dpy. (IV-2)
- .

'

Perfoz;ming the integrations over all momenta and over all but two coordi-
nates r; and r,, we find, with (III-14),

-

U = (3/2) NKT + (1/2) fv n,(T1, T,) B(7)z) dr dr,. (Iv-3)

This is called the caloric equation of state; it expresses U as a function of
volume V and temperature T. In the thermodynamic limit, we can also write

e % = (3/2) kT + (1/2) p fg(—;lz) ®(T1z) dryp, (Iv-4)

or for an isotropic system,

u = (3/2) kT + Zﬂpf g(r) ¢(r) rldr. (IV-5)



Further, one can make use of the so-called virial theorem. This states
that for a system in equilibrium, the virial of the external and internal
forces exerted on the system is equal to minus twice the average kinetic
energy of the system. The virial is defined by

<Z T 'F'i> = -3pV - <Z Tik ?fb : (IV-6)
1

i<k dTik

where Fj is the sum of external and internal forces on particle i, V is the
volume, and p is the pressure. We have, therefore,

) Z <91 _(1/3) <Z . ark>, (v-7)

pV

or

-1 — o
NKT - (1/3)(NthNzy)™ [ PH b dr,...dpy-

pV
i<k Br1

Performing the integrations as far as possible, we find

B e e} =
pV = NkT - (l/6)f b (S ) D s dr,dr,. (Iv-8)
v

r12

This is the thermal equation of state; it expresses p as a function of

volume and temperature. In the thermodynamic limit, we can write

pv = kT - (1/6) p ﬁ(¥1z)¥1z‘ ;_:1’ dryz, (Iv-9)

where v = V/N is the volume per particle.

If the system is isotropic, then, because

- .3 _ 40

r = = 12 Ty

12 il ar,,
we have

o]
3 o s IV-10
pv = kT -— £ g(r) g dir:? ( )

Zil
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The important equations (IV-3) and (IV-8) can alternatively be derived
from the expression (III-16) for the free energy, when we make use of the
well-known thermodynamic relations

e s a(F/T)> _ 3(BF) o
i) '(av>T S <a<1/T> Mdbn - S
Indeed,
i P . He-PH dr,...dpy, (Iv-12)
op Nth3Nz

which is identical with (IV-2) above.

The alternative derivation of the thermal equation of state is a little

more difficult.

dlog ZN
eAY%

The difficulty now is that

We start from

dlog QN
Y

(cf. III-16).

QN depends on volume through the limits of inte-

gration. Suppose the volume is a cube of edge L. Then we put (as was first

done by H. S. Green) 173 =

1 = > = o
QN =_1\Tl fe_ﬁv(rl""’TN) drl...drN es T

and
T 90N r 1 30N
HSorReys Qometiion,
Further,
dV(LTy,..., Lry) _
oL
Therefore,

pV = kTTL <fe'f’v d;,...d;N>

(1/1) {-'J Then,

3N V.= - — =
¥ fe_BV(rl,....rN) dr}...drj,

kT ( 3N- N 9V SRR
NIl Ay —-) =PV 5y
ON3LAN! ,[ P oL/ ¢ S

=1
3NL3N-1 _ 3N =
/( R s
i<k

O ¢( k) dry...dr
4 *1k e-l3V Y .drN,
arlk



or
. d0(Fi)
pV = NkT - (1/3) < z ikt ——— ) (IV-13)
ik OTik

which is identical to (IV-7).

The fact that the identification

F = -kT log Z,
via the usual thermodynamic relations, leads to a form of the equations of
state, which was also found directly, can to some extent be considered as

a proof of this relation (cf., for the above derivations, Ref. 2).

B. The Function g(_;) as the Functional Derivative of the Free Energy

The equations of state discussed above are widely known. We will
now derive an important property of g(r) which is much less known
(cf. Refs. 1 and 7). We will show that, but for a factor (1/2)p, g(r) is the

functional derivative with respect to the pair potential of the free energy per

particle.

According to our definitions, we have [cf. (III-12) and (111-14)]

1 — = — =
oN =T fe-ﬁv<rv--~rN) dry...d7N,

and

3t = = - =
nz(—;l,;z) = N(N-1) (fe' BV d;l...d;N> /e'ﬁv(rl""'rN) dE s doonge

Let

V(Fpee 3p) = 2, 035(Fig)
i<

and let the two-particle potential ¢ vary by a small amount 6¢ . Then

S o B
6QN = _% fz 6¢ije F 1J drl...drN.
i<j
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As all terms in the sum are equal, one has

=l - PR e R -
8QN = 'B&ZI\II\I_!_) féd),,_drldr,_ fe R2% ij dr;...drN

-

-(p}/Z) QN ff5¢|z nz(_;l: 1_‘.z) dr,dr,,

"

and

6 log Q = -(B/2) faqslznz(?x.?z) dridr, = -(B/2) p?V fw?) g(¥) dr.

Now if f(v,T) is the free energy per particle, we have

2t mkT
Nf = -kT log Zy = -kT log QN -(3/2) NkT log ”—”;k—
%

and
Néf = -kT & log Qu-

Hence,
6f = (1/2)p faaa(?) g(T) dr. (IV-14)

We shall see in the following that for f a cluster expansion can be given which
is anexpansion in powers of the density. The theorem (IV-14)will enable us
to deduce from this expansion a similar expansion for the pair distribution

g(r).
Remark
Suppose that the variation of the total potential energy can be

written as a sum of three-particle interactions,

8V(ry, Tp.n, Ty) = z 6045k (;i’;_j';k)' (IV-15)
ij<k
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We then obtain in a similar way as above

N- 1)(N - s e o0 (G i S
QN = '£’|. &_T)(_N_Z) 8¢,,;dr dr,dr, fe Bz 'rN)dr4 sdry
M '(f’/é) QN fé¢123n3(;1’;2';3) d;d;zd;sx
and
5 log ON = -(B /6) f5¢123n3(_1:1'_1:2’_;3) d;,d;zd;;.
Or, if we define, in the thermodynamic limit,
ni(r), rp ra) = P3g3(r12’ T13),
then,
8f = (1/6) pt [é¢123(P1va)g3(P1va) dp,d pai (Iv-16)

i.e., also the three-particle, etc., distribution functions can in a

certain sense be considered as functional derivatives of the free
energy per particle.

C. A System of Integral Equations for the Molecular Distribution Functions

1. The Hierarchy

In the canonical ensemble, we defined (cf. Ch. III)

— e o N(N-1)...(N-m+1) “BV(T1e) TN) = =
B (o D) = N ON e X dr, .- Aoy

(IV-17)
Let V be a sum of pair potentials:

-

)
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Then, on differentiating (IV-17) with respect to _r.l, we obtain

18 o PR v(E il R
P oag, W-miiOyw Jel o,
D 01 - = 1 / N 3ok -pv = -
= o (T ey ) g — e dr o ee.dryg
JZZ Brgn o e k:;h oty T
m
3% 1; - o Ay, - £ =
= - Z Qill T (U5 [y ety i ) = l—:nﬂnmﬂ(rl,,.,,rmﬂ)drmh‘
SR G or, (Iv-18)

We have here a set of linear integro-differential equations connecting two
successive configurational distribution functions. These equations are a
particular case of very general relations, which, also for nonstationary
ensembles, connect the time-dependent distribution functions in phase
space Pp, and Pp4,. They can be derived from the Liouville equation by
integration. (For their derivation, see some of the general references.)
They are often called the Bogolyubov-Born-Green-Yvon-Kirkwood (BBGYK)
hierarchy.

In our special case of the canonical ensemble, we have, for m = 2,

1 dna(T),T2) e Gl D Lo
B ——-——za_’l . =il 5 e ) 5:2 - f;_”’ nsy(r;, rz ry) dr (IV-19)
T r T

or also

1 O log nZ(_;l'_;Z) 301, O3 n}(—;l!?zr?:!) -
5 > = — (Iv-20)
or, o, G S (V7 )

This equation was presumably first derived by Yvon. In Fisher's book,
(IV-18) is called the Bogolyubov equation, and it is discussed there in great
detail; e.g., it is solved there by means of a series expansionin the density p.

The equation (IV-20) is immediately related to the so-called
potential of mean force. The mean force on particle 1, when the position

of 2 is given and one averages over the positions of all other particles, is
clearly

Vi Ry Ry
f- — e P drs...dry

—
37,

R

- -

F (0T = Sl

-
37,

13 (TV-214



This is just the left-hand side of (IV-20). The first term on the right-hand
side is the direct contribution of particle 2; the second term is the average
congibution from particles 3,4,...,N. The potential of mean force

W,( 1, r;) should obey

e A
2 -_Z—_‘,—Z' = Fi(r), 1p). (Iv-22)
o

In view of (IV-21), we have

log n?_(rl,_r.z) = 'BWZ(;I';Z) + constant,
or
nz(rl,_lrz) = constant * e-BWZ(rl’ r2) (IV-23)

More specifically, Wz(¥1,¥2) is usually defined by

BWTLT) 1 fe-/svm,..., PN
(N-2)!ON
If molecules 3,...,N had no interaction with molecules 1 and 2, this would
reduce to e-‘Bq)lZ. The constant in (IV-23) is then seen to be given by
Q-
Pl te

QN

where z is called the activity (see later chapters). In an analogous way,
as W,, one can introduce W,, etc., but we will not need them here.

Kirkwood has discussed an integral equation which is slightly
different from (IV-20). He introduces

- -

i Tz:---’_;N’g) =§e

'MZ

¢jk(?jk), (1v-25)

“MZ

2

—
1

where particle 1 is coupled to the others by means of a coupling parameter
€, which may have values from D toR 1

If this potential is introduced into the definition of n,(r,, r;), one
obtains, by differentiating with respect to E,

1 Jlog nz(-;l,_fz,f::,) f { (rl’rzlrii!g) nz(;l:?s,ﬁ)} ==
—— —————— = -¢, ® 13( r13 = = drs.
B 1 ny( 1y, r5,€) &

(IV-26)

2l
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2. The Superposition Approximation

Let us remember that n;(;l, rz,_r.3)/n2(_;l,-;z) is proportional to
the probability of finding a particleat r; once you know that two molecules
are at _;1 and _fz, respectively. To find an equation for n, alone (without

higher distribution functions), Kirkwood first introduced the assumption that

ns(r,, ¥, rs) b n,( 1, T3) ny( 1y r3) (IV-27)
n,(ry, rp) P3

or the probability of finding a third particle at ¥, when given that two par-
ticles are at r;, and T, is put equal to the probability of finding particle 3 at
¥y when you know that particle 1 is at ?l, times the probability of finding par-
ticle 3 at rs when you know that particle 2 is at ¥,. This assumption, which
obviously is valid at low densities, is called the superposition approximation.
We shall see later that, at higher densities, it begins to fail.

In the literature, one often meets with the superposition approxi-
mation in a different, though equivalent, form; e.g., in terms of the
g-functions (thermodynamic limit), it reads

g3(1,2,3) = g5(1,2) ga(1,3) g2(2,3). (Iv-28)
In terms of potentials of mean force,
Wa(1,2,3) = W,(1,2) + W,(1,3) + W,(2,3), (Iv-29)

and in terms of the specific distribution functions in configuration space,
it can be written

- > > — - -

ps(ry, ra T3) _ Pz(rlr_;z) ; pa( Ty, T3) A

)
3
pl(_;l)/ol(_;z) Pl(—;3) pl(;l) Pl(_;,_) pl(_;l) pl(—;B) Pl(_;z) Pn(—; ' =

Except for terms of order N72, it is equivalent to (IV-27). If (IV-27) is
substitutedin (IV-20), one obtains the approximate equation

P 37, i o

iy dlog nz(;u—;z) ¥ _5®1z 1 fa¢‘l3 P

e = 0Ty, T3) ny(r, 15) drs.  (IV-31)
T

This equation, in which n; is the only unknown function, is generally called

the Born-Green equation. It is widely used to obtain approximate pair
distribution functions.

If (IV-27)is assumed for every £ and substituted in (IV-26), one

obtains



Il dlog ny(ry, r26) S

-B '—ag—_ S S0 ';}3‘ fd’ls{nz(_;lr—;s:ﬁ) ny(r, r3€)

‘Pznz(;v;s:&)} d;s- (Iv-32)

This is the Kirkwood integral equation for the pair distribution function.
Whereas (IV-20) and (IV-26)are exact, (IV-31) and (IV-32) are only approxi-
mate. One can expand both the exactand the approximate n, functions ina power
series in the density p. We shall see that thetermin pZ in the approximate
(Born-Green or Kirkwood) n, function begins to deviate. Itis hard to know
just how good the approximate n, function is at higher (e.g., liquid) densities.

One might as well have started from the next higher equation in
the hierarchy (IV-18), the one relating nj and ny. One can then make for ny
an assumption analogous to the superposition assumption (Iv-27). This
probably gives an improvement compared with the above procedure.

D. The Fluctuation Integral: 1 + p [ {g(¥)-1} dr

In Ch. I, we mentioned the relation

nz - n :
1+pf{g(?)-1} dr = <Q<n0> Q> (IV-33)

[cf. (I-4)], where n( is the number of particles in an arbitrary volume I,
which, however, should be small compared to the total volume of our system,
but still large compared to the correlation length, i.e., the distance for
which g(r) - 1 has become zero essentially. In a similar way, one can

express
COREN]
<o)’

in terms of an integral of g3(¥1,?z,?3). This type of integral is sometimes
called a fluctuation integral. We will prove (IV-33) now. We have

i=1

From our definition (III-15), we see that
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=1 - - -
nl(_;) = ] {fe-‘Bv d;l...d;N} -/;—,BV(r,rz,...,rN) d;z...d;N
=l v o -
=S {fe—‘BV d;.l ..d;N} fe_B (r1 720000 TN) 5(r - r;)dry...dry
N > -5
= <z 8(r - r1)>
i=1
Hence,
<ng> =f ny(7) dr. (IV-34)
Q
Similarly
N N - = - - =
né :Z Zf f 5(r-r1;) 6(r'-rJ)drdr'
= il

Again, from our definition (III-14), it is easily verified that

n,(r,7') = < Z Z &7 -1;) 8(T _?J-)>, (IV-35)

and therefore

o e fQ fQ S

<ng> - <ng>’ = <> foQ {nzG,?-)-nl( )nl<¥'>} drdr'.



Hence,
2 2 .
<nag>-<np> ny( ;) =
—;—-——=l+p {——r—--l}drlz,
S Q P
or in the thermodynamic limit
2 2
<Ba > =00 . &
22207 L wof {ea}an
<>
where now the integral must be extended to infinity.

Remark

(IV-36)

(IV-37)

If in (IV-36), Q were taken to be V (total volume), we would

have got

e [ fEEETS 0 aF -0
v /%

(IV-38)

From (III-7), one easily verifies that this relation is indeed exact.

On comparing (IV-37) and (IV-38), one realizes that one ought to be

careful in replacing n,(F), T;) by p?g(¥,;). As remarked before,
these quantities are equal except for terms of order N-L* When
integrating over the total volume V, these terms would become
important. As long as § << V, these terms can be neglected in
the integration over volume , and for such volumes , (IV-37) is

valid.
E. The Integral: ‘/‘E(I-L.{ dr.
B - Trl

This integral, which should not be confused with that occurring in
(IV-37), plays a remarkable role in the static approximation of scattering

*For the ideal gas, for example,

- N(N- 1),

n,(T,, T,) = Tv
hence,
n,(7), T2) = e (i
p* 30

whichapproaches 1 for large separation only when terms of order N~ ! are

neglected.

31



32

(cf. Introduction). For the content of this section, see G. Placzek, B. R. A.
Nijboer, and L. Van Hove, Phys. Rev. 82, 392 (1951). In the static theory
of scattering, we derived the formula of Zernike and Prins [cf. (I-2)]:

=l f{g(‘r’)- 1} LT (IV-39)

Here, K = k, - k, p is the density, and the cross section is expressed in
units of the cross section of an isolated particle. For convenience, let us
introduce as unit of length the cube root of the volume per particle; then,
p = 1. Further, we introduce X = 27Hh.

alk

Then (IV-39) simplifies to

o(h) - 1 = f{g(}’) - } gEART g (IV-40)

Suppose we now want to find the total scattering cross section for a ran-
domly oriented system (e.g., a polycrystal or a liquid). We must then
integrate over all angles and at the same time average over all directions
of H. It is convenient to combine these two operations. If we express
the total cross section in units of the total cross section of an isolated
particle, we have

| e dg
S = f (1/2) d(cos Q)fo(h) o

41
-1
where d{ly, is an element of solid angle in _};—space. Because

1/2
h = (2/3) sin-g— = {Z(l—c+9)}_‘

d(cos 8) = -»*h dh,
and hence
42 2/\ = 22 g
Otot:_g—'—n_/; hdhfo(h)dﬂh=ﬁL0(h)T,
where the integration has to be extended over a sphere of radius 2/

One can also write

0 ne = (o)
Ot =il ﬁ/; S e dh. (IV-41)



For large h (i.e., A/[2 sin (6/2)] << atomic distances), interference effects
become negligible and o(—ﬁ) tends to 1. As a consequence, for short wave-
length of the incoming radiation, the integration in (IV-41) may be extended
over the whole of —l;-space.

We have then, for this asymptotic value,

2

A
Otot,as = ! -~ gn I’ (IV-42)

where

e fl_'h‘l@ e f’_'g_g_;_) dr. (IV-43)
mr

The latter equality follows from (IV-40) and Parsefal's theorem and by
noting that 1/h is the Fourier transform of 1/(mr?). The problem was to
evaluate I for dense systems as crystals and liquids. For an ideal rigid
lattice, g(r) is just a sum of 6-functions, and the integral (IV-43) reduces
to a lattice sum, which unfortunately converges extremely slowly. It is
hard to estimate I from (IV-43). However, one may apply the following
procedure:

T e 2. BTy e
it = f{l—g(r)} — dr +f{1_g(r)} (1 - )dr.

By applying Parsefal's theorem again for the second integral, we find

-~ rz = =5 _—
I-= f{l-g(}')} emz dr +f{l-o(h)} E(—h@dh,

where

d(x) = _.Z_foo e'tz dt
VA

is the so-called error function. Now

S e
dr = 2,
r?
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and
fq’("/%—h) dh =1
T :
hence,
T 3. fg(?) e_ﬂj dr - fo(ﬁ) q’(_‘fh_) dh. (1V-44)
ALX:

The factors e'ﬂ'rz/(ﬂ'rz) and ®(+/7h)/h make both integrals converge very
rapidly.

We see that three is an upper bound for the integral I, and for dense
systems one may expect the deviation from three to be small. The reason
is that g(0) = 0, and for values of T where g(7¥) becomes appreciable, the
second factor in the first integral has already become very small. Some-
thing similar holds for the second integral:

o0) = 1+ [ (g@)-1)d = xq,

i.e., the relative isothermal compressibility, which for dense systems is
only a few thousandths.

From (IV-44) it is easy to compute I for a rigid lattice. Some re-
sults are compiled in the following table [S is the first integral in (IV-44),
R the second]:

S R I
fec 0.058191 0.053347 2.888462
hcp 0.058193 0.053340 2.888377
bcc 0.059068 0.053650 2.888282
Simple cubic 0.086169 0.076533 2.837298
Diamond 0.164718 0.141882 2.693400

These results indicate that a more open structure leads to smaller

value of I. In the paper quoted on page 32, I was also evaluated for harmoni-
cally vibrating lattices. If we put

I=15-1 (IV-45)
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where I, is the value pertaining to the rigid lattice, it is found that Iq is
essentially positive and is given by

Ig = BXT: (IV-46)

where B is a numerical factor =1.5, and X is the relative isothermal
compressibility #0.003 at room temperature.

For liquids, (IV-44) makes it possible to estimate I with an accuracy
of about 5%.

An intriguing question is what is the maximum value that I can have.
It seems rather plausible that the maximum value is reached for the fcc
structure, but as far as I know no proof has yet been given.

It will be obvious that the question for which structure the integral

K = f&f dr (IV-47)

T

has a minimum, is closely related to the question posed above and that the
answer will be just the reciprocal structure to the solution of the first
problem. One would then surmise that K would be a minimum for the rigid
bee lattice (which is reciprocal to the fcc lattice). Now K has a simple
physical significance. It represents the energy (per particle) of a system
of negative point charges in a neutralizing positive background, if we con-
sider the electrostatic energy only. Indeed, it is generally assumed that
for a low-density electron gas, a bcc structure would have minimum energy
(Wigner, Fuchs). Theenergy value itself follows immediately from the data
in our table on page 34.
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V. THE ONE-DIMENSIONAL SYSTEM
We will now briefly consider the application of our formulas to a
one-dimensional system. (Cf. Giirsey, Proc. Cambr. Phil. Soc. 46, 182
(1950); Van Hove, Physica 16, 137 (1950); and the book of Miinster,

mentioned in the Introduction.)

Let us first try to evaluate
1 SR CS R e
QN = F‘/‘e B ( L N)d.de.dexN.

Let us suppose that the potential energy V is a sum of terms be-
tween nearest neighbors only; i.e.,

WS RE T e z P41 - %4)- (v-1}

Let us take
0 = x<x <%, <.. <xN<xp4 = L. (v-2)

That is, we take x, and XN+ fixed at the ends of our "volume" L, and
the order of the other particles is given. Then,

1 L L L
QN(L) = Wf def de-l f dxle
0 0 0

L XN X, 'B
[ de f de -1t dxle
0 0 0

L
f d.xNe_B®(L_xN) fo dXN_le-ﬁ¢(xN-XN_1)
0 0

N
-B Z bxi 4, - %)

==

-

2

bl 4 - %)

=
11
(=}

0]

fxz Xme—ﬁ‘(b(xz-xl)-ﬁtb(xl)' )

Now take the Laplace transform of Qp(L), which is an (N + 1)-fold
convolution product:



51

0

2

=
il

f e 2Lon(n) = &Y,
0
where

B & f‘” o-sx-B o (x) ax. (V-4)
0

By applying the inversion formula of Laplace transformation and
evaluating the resulting integral, e.g., by the theorem of residues, one
obtains Qp(L). Let us first consider the simple case of one-dimensional
hard spheres (rods) with length a. In this case,

= I e-5a
®(s) = f e (V-5)
a

We then have

1
Qn(L) = 3 {L-(N+1) S s [ ) i
=0 Ty (o 2 10) e (V-6)
From
2 N/2
B = kT log Zpy = -kT log (—WE—k—T) - kT log QN>
we then find
BF) NkT
= (&) = ——————. N
i (BLT L-(N+1)a (-

Introducing the average length per particle £ = L/(N +1), and neglecting 1
compared to N, we obtain

p(£-a) = kT. (V-8)

This is the well-known equation of state for one-dimensional hard spheres,
which was first obtained by Tonks in 1936.

Remark

One may easily verify that this equation of state can alterna-
tively be derived from the virial equation in one dimension,
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+o00
pL = NkT -(l/Z)Lpzf g(x) x(—;%dx, (v-9)

=00

by substituting the pair distribution function g(x) for one-
dimensional rigid spheres as derived in Ch. I. Notice, however,
that the average length per particle £ was called there £ + a.

In the more general case of an arbitrary two-particle interaction
(but still restricting ourselves to nearest-neighbor interaction only), we
have

1 Cc+ico x N+1
QN(L) = Fif esL {o(s)}" " ds, (v-10)
C

-ico

where c is chosen so that it is positive, and the path of integration lies to
the right of all poles of ®(s). One may thenclose the path of integration by
an infinitely large circle enclosing the left-hand portion of the complex
s-plane and evaluate Qn(L) by the theorem of residues. Alternatively, in
the thermodynamic limit N > o, L - ®, £ = L/(N + 1) finite, one can evalu-
ate log QN(L) by the method of steepest descent. We have, for the integrand
in (V-10),

eSL {B(s) N1 = {esf B(s)INH = o(N+1)X(s), (V-11)
where

X(s) = sf + log @(s). (V-12)

The first factor, eSL increases with s very strongly, while the second
factor,

{®(s)INH,
decreases with s very strongly.

The saddle point s, of the integrand of (Vv-10) is given by

sl =" +(dis log 5(5)) = 0. (v-13)
s=s,

By expanding X(s) around s, and performing the integration, one
finds



or

lim log Qp(L) = soL + (N+1) log @(sq).
N-—>o

We now see that the pressure p is given by

3 log QN (L
i alilan N (L)

i oL

A kT{so+ (N+1) [g Py
dsy

by virtue of (V-13), so that in the thermodynamic limit,
N+
= ePL/KT J 3( 2

OnlL) = e / <1>( kT) ;

and (V-13) becomes the equation of state,
o (P
fit 3 —) =
KT 55 log @(kT) 0,

where & was given by (V-4).

One can show that for 0 < T < o,

0<-(~2TP)T<°°;

i.e., the pressure decreases monotonically with increasing vol

dSo
dL

(V-14)

} = kTsy,

(V-15)

(V-16)

(Pa1T)

(V-18)

ume per

particle. For T - «, one finds that p = kT/ﬂ; and for T = 0 (if the
interaction has the usual form with a minimum at xm), one finds

p=-¢W), &< xy

0, b>xm.

Remarks

(v-19)

1. Glirsey has evaluated the isotherms for a potential
consisting of a hard core + arectangular attraction well (cf. his

paper).

89
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2. Van Hove has generalized (V-18). He shows that it holds
in the one-dimensional case for an arbitrarily large but finite
range of the force, without restricting himself to nearest-neighbor
interaction only. This shows that a one-dimensional fluid has no
phase transition.

In a similar way as the configuration integral, one can compute the
distribution functions, in particular the pair distribution function, for a
one -dimensional system with nearest-neighbor interactions only.

Let us consider again for a moment the situation described by
(V-2). According to the canonical ensemble probability, the probability
toifimdS Neparticle s at o5y, 5.l v-s, XN 1is

nN(xl,.A.,xN) = QI_\}exp {-Bd(x1) + dlxz-x%,) + ... +¢(L-xN)]}. (v-20)

To find the probability that the kth particle is at x, one has to
integrate this expression over all coordinates except xx = x. Fixing the
position of the kth particle at x divides the system in two parts, one

with length x and k - 1 particles, and the other with length L - x and
N - k particles.

One finds in this way,

Qpe_y (x)QN (L - %)
k QN(L)

pg(x) =

(v-21)

Let us again take the case of hard rods. Using now (V-6) and
going to the limit N - o, L. > o, one is led back to the result of
Zernike and Prins, derived in Ch. I.

Remark

In the case of one dimension and nearest-neighbor interaction,
it is rather obvious that the superposition approximation in the
form gs(1,2,3) = g,(1,2) g,(2, 3) is strictly valid. As a result,
the Born-Green equation is also rigorously valid in this case.
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VI. THE MAYER CLUSTER EXPANSIONS

A. The Mayer Equations

1 propose to spend the remaining time available for these lectures
on the Mayer cluster expansion and some related topics. Here we have,
so to speak, the prototype of modern many-body theory and the method of
diagrams. This many-body theory has in the last 10 years or so shown a
tremendous development, mainly in the treatment of interacting quantum
systems. The inspiration has largely come from field theory and the
method of Feynman graphs. However, some of the methods and considera-
tions can be traced back to the Mayer cluster expansion (e.g., the reduction
to connected diagrams). And, of course, if, e.g., in the Lee-Yang theory
of interacting quantum particles, one goes to the limit 7 - 0, one is led
back to the Mayer theory, and the graphs of Lee and Yang reduce to the
Mayer graphs. We shall try to give a modern account of Mayer's theory,
in which the connection with recent theories comes out a little more
clearly than in the original treatment.

The configuration integral QN is given by

1 - T, T A ...,_> - 1= =
QN = W e BV(I‘I, T2 rN) d7r) dr,...dry. (VI‘I)

We shall usually (though not always) suppose that the potential energy is
a sum of two-particle interactions

i T = Bl (VI-2)
i<k

The molecular distribution functions are given by integrals similar to
(VI-1). Once we know QN, we can compute all thermodynamic quantities.
In particular, the equation of state is given by

o log QN
dv

5 = (VI-3)

However, calculating these multidimensional integrals is difficult.
J. Mayer (1937) succeeded in expanding log Qn in a power series in the
density. From there, one is led immediately to the so-called virial ex-
pansion of the equation of state. We shall not touch upon the difficult
problems related to the convergence of these expansions and to condensation.

Instead of ¢(r), which goes to infinity at short range, Mayer intro-
duces the function
Sl R

£35(rij) = (Vi-4)
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The general form of f(r) looks like

f(r)

: s

For hard spheres, f(r) looks like

f(r)

where a is the diameter of the spheres. Now QN can be expanded in a

sum of integrals over products of f's:

1 Cig oy
oy =5 ZT(l +£;5) d7)...dTN
j

155 kg i<j k<Z m<n
no equal no equal pairs
pairs

Each term can be represented by a graph, e.g.,

LT KN Sl e 1

B (1 o (Bprfayn ey s

0 O 0 S O s O O =

(12) - (&) - (12) »243) (6) (1)

Fl.' <”; e zl thaty 2 X ¥ fijfkifmn+"'> dry...dfy
i<j

(VI-5)

(VI-6)
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Each of the four points is represented by a dot. A line connecting i and j
represents a factor f;;. The numbers in parentheses give the number of
terms represented by each graph when one labels the four points.

One will understand that in this theory the concepts of linear
graph theory (i.e., points and lines between pairs of points) will play an
important role. Let us mention a few definitions. A simple graph is a
graph in which two points are connected by at most one line. A connected
graph is one in which there is at least one path between any two points. An
articulation point is a point where a graph can be cut into two or more
disconnected parts. A graph without articulation points is called a star.
A general connected graph is built from stars hanging together in the ar-
ticulation points. If the stars are just single lines, one calls the graph a
Cayley tree. If the stars are polygons, the graph is called a Husimi tree.
For example:

Connected graph with Star Cayley tree
articulation points ®

Let us return now to the expansion (VI-5). If we take the first term 1 only,
then QN = VN/N' and p NkT/V, i.e., one obtains the ideal gas law.

If one restricts oneself to so-called simultaneous two-particle collisions,
i.e., if one includes terms like f),f3,fs; but excludes terms like f1,f15 (one
takes into account graphs consisting of disconnected single lines only), then
one finds

_L_ﬁl,

QN =

[ = ff(r) dr,

.2|<

where

and
pV = NkT (1 3 p_fl) (¥i-7)

That is, one obtains the correction to the ideal gas law to first order in the
density. If one includes clusters of three particles, one obtains the next
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term in the

density expansion, and so on. There are several ways to treat

this in a more systematic way. One is by making use of general theorems
from the theory of linear graphs. (Cf. the lectures by Uhlenbeck and Ford
quoted in the Introduction, where also the proofs of these theorems are

given.)

Theorem I:

Let Gy be a graph of N points either connected or dis-
connected. Suppose that with each graph a weight W(GnN)
be associated, which satisfies the following two conditions:

(a) W(GN) is independent of the labeling of the points.

(b) W(Gy) is a product of the weights of all connected graphs
forming the original graph; i.e.,

w(Gy) = EIW(C/&):

where Cy is a connected graph of L points.

Now define:

FN

= 2 W(GN)r
(GN)

where the summation is over all graphs of N points, and

fg =

RUCH)

(Cy)

where the summation is over all connected graphs of / points. Introduce
now the generating functions

F(x)

and

=) £ ¥

Then Theorem I says that

1+ FG) = ef(x),

(Vi-8)

The proof of this theorem is simple though rather abstract, and we will
not reproduce it here.
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In our case [cf. the expansion (VI-5)], we take
w(Gy) = [TT £i;971...drn-
GN
This definition satisfies the two conditions on the weight mentioned above:
it is independent of the labeling of the points because we integrate over all

coordinates, and it is the product of the weights of disconnected parts.

Now

QN='I\1T. z W(GN)»
" (GN)

where the summation is over all graphs of N points. We further introduce
the cluster integrals

by (V,T) :—lv fz 7Tf .dT)...dTy. (VI-9)

The factor V~! is introduced so that for large V (thermodynamic limit),
by (V, T) = by (T), (VI-10)

that is, becomes independent of V.

Theorem I applied to our case gives

Y oy2N = exp{ 0 ngzﬂ} = exp [VX(V, T, z)], (VI-11)
N=o =t
where
X(V.T,z) = Y bygzb. (VI-12)
£ =1

The relation (VI-11) is called the first Mayer theorem. From the definition
(VI-9), we see, for example,

1 s 1 e
by = 1, by = 3y | dNdTh; = sz(r) v,

3
1 By Eulid = cf. last line of (VI-6).
Bat= o fdrxdrzdrg[‘/\z + A]: dndiby 08, LBl

(3)

(VI-13)
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The numbers in parentheses give the number of times the graph has to be
counted (e.g., one line can be left out in three different ways).

1. Alternative Method

Let us now briefly indicate another derivation, initiated by

Ursell, which does not require the assumption of two particle interactions

and which moreover can be adapted immediately to the quantum mechanical
treatment.

We have

1 - -
QN = ﬁfWNdrl...drN,

with

Wy = e-BV(?“ o ?N). (Vi-14)
In the particular case of pair-wise interactions,

Wy = 77-(1+fij). (VI-14a)

i<j

Notice that Wy = 1, if all particles are far apart. Now we define the
Ursell cluster functions Up:

U (1) = Wy(1) = 1,
U,(1,2) = Wu(1,2) - Wyi(1) Wy(2),
Us(1,2,3) = Wi(1,2,3) - Wp(1,2) Wy(3) - Wa(1,3) Wyi(2) - W,(2,3) W,y(1)
+ 2w, (1) Wy (2) Wy(3), (VI-15)
and so on. If n is the number of factors, then the coefficient is

(E1RSE (=)

These equations are equivalent to

Wz(l: 2) = UZ(I’ 2) bl Ul(l) U1(2>v
W (258 )= 10 (L, 1253 ) RO (1) U,y (3) + U,(1, 3) U,(2) + U,(2, 3) U, (1)
G (U (2) R (33 (VI-16)

and so on. We have represented W, as a sum of products of U-functions.
A product will contain my Uy's where
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>

bm, = N.

l:l l

It is not difficult to prove that Uy(l,2, ..., £) vanishes for so-called

separated configurations, i.e., if the £ molecules can be divided into two
or more groups that are so far apart that there are no interactions between
the groups. The assertion is based on the fact that for separated con-
figurations, Wy factorizes. It can be checked in a straightforward way

for £ = 1, 2, 3 and can be proved for the general case by induction.

We now define the cluster integrals,

1 =~ - = =
by =£—!\;fUI/(r1’ peeg rﬂ) dr;...dry. (VI-17)

One may verify that for the special case of two-particle
interactions, (VI-17) is equivalent to (VI-9), because in Uy the dis-
connected graphs cancel according to (VI-15).

The integral over any product of U functions in (VI-16) becomes

(116, V)™ e (2!b,V)™ -7T @ 'ogv)™

when there are my clusters of £ particles in the products. Remember that

Other terms in the expansion (VI-16) can be obtained by permutations of
molecules, except those within a subgroup (a U-function), and except also
those obtained by permutations of subgroups of equal size. The total
number of these terms is then

T," I ml&ml (VI-18)

Hence, by integrating Wy over the coordinates of all particles, we obtain

Vby )b
on = Tl (VI-19)
{my} » 4
Zf,mz=N
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where the sum is over all partitions of N particles, satisfying

N
z;@ml = N.
1

Relation (VI-19) expresses Qp as a sum of products of cluster integrals
by. Or (in the case of pair-wise interactions) the contribution of the sum

of all graphs of N points is expressed as a sum of products of the contribu-

tions of connected graphs only.

The relations (VI-19) can be inverted to

Vby= Z (-1)a qrﬁif:, (V1i-20)

Lt

where

and z is the sum over all positive integer combinations {nj} such that

{ni}

£
Z inj = £.

1=1

For small indices, one can check (VI-19) and (VI-20) directly
from (VI-16) and (VI-15). The first Mayer theorem can now be obtained.
If namely (VI-19) or (VI-20) holds, then we have

00 00
QnzN = exp{ ) bzl (VI-11)
N=o b=1

i.e., the power series Z QNzN (remember that Qn =0) can be written
N

as an exponential. One can verify this by equating coefficients of equal

powers of z successively, but it can be proved generally. Both series

should converge.



Remark

The relation (VI-11) with (VI-19) or (VI-20) is a case of the
so-called cumulant expansion in statistics. If x is a random

variable, then
ehig
[

o eNpy =
o 2l

where the moment uy = <xN>, and the cumulant g = <xl>cum'
(The latter average is called a cumulant or connected average.)
One can express the cumulants (or semi-invariants) in terms of
moments and inversely, and these relations are equivalent to
(VI-20) and (VI-19). The cumulant expansion can be extended to
the case of several random variables. If these can be divided

into two or more statistically independent groups, all cumulants, in
which variables of different groups appear, vanish identically.

Actually, in proving (VI-11), we did not need the full cumulant
theorem, but only the relations between the coefficients of a certain
power series and the coefficients of the power series representing
the logarithm of the first one. Brout (cf. Brout and Carruthers,
Lectures on Many Electron Problems, Interscience 1963) uses the
cumulant theorem in a more complete way by applying it to

il
QN :W/‘e' BVdT,

which can be considered as an average of an exponential over phase
space. Log QN is then expanded in powers of B, but in the co-
efficients, averages of powers of ¢(r) occur, which strictly makes
no sense. By summing over so-called ladder diagrams, Brout is
then able to obtain the virial expansion for log QN-

We shall now derive the so-called Mayer equations. We have

[cf. (VI-11)]

00
Y anzN = exp VX(V, T, ). (VI-11)
N=o

2
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Cauchy's theorem leads to

QN = 5— ¢ dz z-N-1 VX, (vi-21)
it
where z~N-! decreases strongly along the positive z-axis, and

c e z QNzN

is a polynomial in z with positive coefficients (polynomial, since we can
pack only a finite number of particles in a volume V). Hence eVX will
increase strongly along the positive z-axis. The integrand of (vi-21)
will have a sharp minimum at a certain point z, on the positive z-axis.
One may then apply the method of steepest descent. We write the integrand
as

NK(z)

e )
where

NEl
N

K(z) = %X(V, Tiz)h- log z.

In the thermodynamic limit,
\Y o
N> pa, V >, ﬁ = bz(V,T)—’bE(T),

[cf. (VI-10)] we assume that
X(V, T, z) - XT,z),
so that

K(z) - vX(T, z) - log z.

Then,
K!(zg) = 0 = o +v(-§—>z£) ’ (VI-22)
and

K(z) = K(z) +=(z - 2¢)2K"(zg) + ... (VI-23)
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We know from the theory of complex variables (remember the
equations of Cauchy-Riemann) that K(z) has a sharp maximum in z, along

a line passing through z, parallel to the imaginary axis. Then, applying
(VI-23),

NK(zg)
QN = 2—;“ dz eNK(Z) = ;—;—. (VIi-24)
2TNK " (2q)
One then finds for the free energy per particle
= h3z,
f(v, T) = -kT|vX(T, z¢) - log —————— (VI-25)
(2mmkT)*/?
Hence,
of -
P _g = kTX(T:ZO)

[the other terms cancel because of (VI-22)], and from (VI-22),

From the definition of X [cf. (VI-12)], these equations may be written as

B YT |
kT =

and % (VI-26)

Lo Y smylr) .
4 Z:l

J

These are the famous Mayer equations.

2. The Grand Canonical Ensemble

By means of the grand canonical ensemble, the derivation of
the Mayer equations from the first Mayer theorem (VI-11) is almost im-
mediate. Let us therefore digress a moment and consider this ensemble
in a little more detail. It can be considered as a collection of canonical
ensembles with varying number N of particles, in a similar way as the

canonical ensemble could be considered as a collection of microcanonical
ensembles with varying energies.
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Suppose we look at a macroscopic subvolume V of a system
enclosed in a large volume V'. We describe the system by a canonical
ensemble. One can then calculate the probab111ty to fmd in the sub-

volume V, N particles in the phase I rN, p], pz, e PN The
result is
= — 1 > .
P(N, T, ..., Py) = g exp{-BpV + BNy - BH(Ty, ..., pN)}.  (VI-27)
he

Here p is the pressure,

M =f(v,T)-v§ S

is the thermodynamic potential (or Gibbs free energy) per particle, and
exp(-BpV) serves as a normalizing factor because necessarily

00

1 e
ZW fPNdrl...de:I. (VI-28)
&

The integration includes automatically all permutations of the N particles
over the cells df,dp,, ..., dfydPy; hence we must divide by N!

As a generalization, we now define, for a given kind of particles
and for given volume V and temperature T, a grand canonical ensemble as
an ensemble such that the probability to pick a system of N particles in
the phase T, ..., _P;N is given by (VI-27). The grand canonical ensemble
average of a quantity A is

1 - =
> = %-ﬁ—r fAPN drl...de. (V1i-29)

The combined summation and integration can often be per-
formed much more simply than the (canonical) integration alone. In the
grand ensemble, the overwhelming majority of systems has a number of
particles very close to the average number, so that it leads to very
similar results as the canonical ensemble.

The grand canonical partition function is given by [cf. (VI-28)]
pv N

kT i kT - e
Z = = ; . (6 hf e -
gr & ; NN e ry...dpyp (VI-30)




so that

pV = kT log Zgy. (VI-31)

In the thermodynamic limit, one finds that (kT/V) log Zgy becomes in-
dependent of V. It will be a function of u and T. Therefore

P = pl, T),
or

p = p(z, T), (VI-32)
where

o (zn_;nzkg)m eM/kT (VI-33)

is the so-called activity or fugacity. From

u = £+ pv,

it follows that

~HeN NS RS RN e
so that
(g—i)T =%= o) (VI-34)

To find the equation of state, U (or z) has to be eliminated between (VI-32)
and (VI-34).

Let us now return to the first Mayer theorem (VI-11):

Nl

QNZN = exp{ Z V'Blzi'}. (VI-11)
=1

0

From (VI-30) and (VI-33), it appears that the left-hand side of
this theorem is just Zgr' Hence,

Zgy = eXp EZI VBgzﬁ}, (VI-35)

538
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and thus,
T 00
= weelogdes v WD zzx byzt,
and (VIi-26)

. (%E)T -3, 2 Zzsgza.

These are just the Mayer equations (VI-26). Note that (VI-11) above is an
identity of two power series, valid for all z for which both expressions
exist. For a particular value z, of z, which is called the activity, the
left-hand side of (VI-11) represents the grand canonical partition function.
It is this value z, of z which should appear in the Mayer equations (cf. our
first derivation of these equations; the index 0 is usually omitted, however).

B. Virial Expansion of the Pressure

Our problem now is to eliminate z between the equations (V1-26) in
order to arrive at an expansion of p in powers of the density p, i.e., the
so-called virial expansion. This could be done by successive approximation.
Remember [cf. (VI-13)] that b; = 1. Therefore, for small z, p = z, and
the substitution into the first equation (VI-26) yields p = kTp, which is the
ideal gas law. Then one could include z% and so on. A systematic method
can be applied with the help of another general theorem in graph theory.
Just as Theorem I was concerned with a relation between disconnected and
connected graphs, Theorem II leads from connected graphs to stars. or
from cluster integrals by to irreducible cluster integrals Py.

Theorem II: Let W(Cy) be the weight corresponding to a connected graph

of £ labeled points. It should again obey two conditions:

a) W(Cy) is independent of the labeling of the points.
b) W(Cg) =TT W(Sp,).
m

i.e., it is the product of the weights of all stars forming
Cy. Now define:

f= 2 W(Cy),
(Cg)

where the summation is over all connected graphs of
/ points; and ;i
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where the summation is over all stars of m points.

Introducing the generating functions

and

(a single point is not a star; therefore m starts at 2), and calling

df
T(Z) = d_z
then Theorem II states that

T(z) = z exp dl;i(TT)} (VI-36)

For a proof, we refer again to the papers of Uhlenbeck cited in the Intro-

duction. To apply Theorem II to our case, we put

The product property of the weights holds for large \Vi.f Then)

fy = L'by.
Further, we define jthe irreducible cluster integrals (G =02

[z 7Tf d7,...d%, (VI-37)

rn

Then,
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The generating function is

r(y) = Z._O it i

so that

and

df 00
T(=z) = B == = gz; A@bgzl'5 = e

Hence Theorem I leads to

zed(p)

o]

pe-%(p). (VI-38)

z

The relation (VI-38) inverts the second Mayer equation. It has been derived
in various ways by Born and Fuchs, by Kahn and Uhlenbeck, and by others.

We can now obtain the virial expansion. From (VI-26), we have

z P
Br= [ an s [0 o0 afoen )

n
S
>

fop 500) {e-¢(P) dp - p¢'(p)e~9(P) dp}

P
p -j; p®'(p) dp

1

P 00
=P - f Z mp p™Mdp
m=1

0

00

m
A e
mz=l i (VI-39)
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If we write, as one does conventionally,

BY ._ m-1
Tr oW Y. Bm(T)™, (V1-40)

B ()= — B (VI-41)

From (VI-37), it follows that

1 =T : S o]l =0
b fudtdn - fuoe -5 [Ea (i)
= _1_. T il P 3
oo E 21V f12f13f23 dridradr; = By drdrpdrs IAZ},

4 3
By = 5 /d?,dad?sdi{ L Ll ZI}
(6)

and

4
srathos g g
Bs = 1y fdl d5{51ﬁ;3+é)+g+%+@+g
I (30)

(12 (60)  (10) 10 60) (30
AR )
(30)  (15) (10) (1) (VI-42)

where the numbers in parentheses indicate the weights of the graphs shown.
Analogous to the relation (VI-19) between Qy and bg, there is an explicit
relation between by and B . In fact, one can prove that ﬂzbz is the co-
efficient of y*~! in the expansion of

eXP{/li Bmym} = exp [£Lo(y)]
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Or also,

Goai s - s
nm m

Zmn,=4-1

In principle, the virial coefficients can be calculated as soon as the inter-
action between the particles is known. The computation of all but the very
first is, however, a difficult problem of integration. The measured value
of the second virial coefficient B, is one of the most accurate sources of
information for the interaction between molecules. It is known in many
cases over a whole range of temperatures within 1% accuracy. Usually, for
simple systems, one takes a Lennard-Jones potential

¢(r) = 46{(%)12 -<§>6}. (VI-44)

The two parameters € and 0 can be determined from the experimental
B,(T). If energies (kT) are expressed in € and lengths (volume) in terms
of 0, all gases, where the interaction can reasonably be represented by a
potential (VI-44), show identical behavior in the classical domain (law of
corresponding states). Once the interaction is fixed from B,, one can
compute B;(T). In several cases, the result obtained fits rather accurately
with experiment, whichindicates that the underlying assumption of pair-wise
interactions is not so bad. For a system of hard spheres, the first few
cluster integrals and virial coefficients have the following temperature-
independent values (up to By, they have been calculated analytically),

where conventionally b = 27rd3/3 = 4 times the volume of the spheres

(d is the diameter):

by = 1,
b, = -b,

by = 1.6875b2,
by = -3.554b°,

o= a0
Bos—ab,
B; = (5/8)b?

B, = 0.2869b%,

and

Bg 0.1103b*%. (VI-45)
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Remember that, for a Van der Waals gas,

a
T
B3 = bz,
B = 1o Giee (VI-46)

C. A Simplified Cluster Expansion [cf. N. G. van Kampen, Physica 27,
783 (1961)]

The derivation of the virial expansion of the equation of state, as
reviewed above, is rather complicated. First the partition function QN
was written as a sum of contributions from different diagrams. However,
we want to find an expansion of the free energy, which is proportional to
log Qp, or of the pressure, which is proportional to (d log QN)/dV. In
Mayer's theory, p was first found as a power series in the activity z, and
after that the result had to be rewritten as a series in the density p.

Van Kampen proceeds by expanding Qp in a product (i.e.,
log QN in a series), and in this way obtains the virial expansion directly.
In his derivation, there is no need to introduce the activity z. Let us
briefly indicate his procedure. We write

NIQy = fe'ﬁ(¢‘2+¢‘3+"‘¢N'l’N) dr,...drN

= VN(?//127/’13~--¢N—1,N)' (V1-47)
Here,
paoL e-ﬁ¢1z,

and the bar denotes the average over all positions of particles inside V.
Note that ¥;, - 1 as

- -
|1‘1 'Tzl et

It will be obvious that, with respect to the averaging, ¥1, and Vs,
are statistically independent, as are ¥, and ¥;3. We have therefore

?//121//13 5 wuwn =7//—1zz~

However, Y12, Y13, and ¥,; are not independent in this sense. Still, for
small density, one can write in first approximation
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VizVs¥as = %z?u azs-

This would be exact if one of the ¥'s were one, but the configurations
where all three ¥'s differ from one are rare for small density.

For a product of ¥'s involving more than three particles, the
same holds. Therefore to first approximation:

(1) __ (v2)N(N-1) 1 . e i R
N.VQNN = (¥12) 2 { o Pz % 2\_/_,_}

={1+% f(e—ﬁmz ) *}(l/zm(N-x)

X {1 . E\_;}(I/Z)N(N-x). _

For N+ ®, V - », such that N/V = p,

il 1
ﬁlong(\I) = log V - log N + 1 + log {l+._1.}

log v +1+(1/2)pB,. (VI-49)

1

For the free energy per particle, one finds in first approximation

£1) = kT {1 +1log v + (3/2) log M—:‘Zk—TJr (1/2) pﬁ,}. (VI-50)

To find the higher terms in the virial expansion, one applies
successive correction factors, which take account of the statistical
correlations between the y's that were neglected in the foregoing
approximation.

The first correction comes from three-particle correlations. One
must therefore multiply by

Yia¥as Vas = V12 Vs Vs _
Yz T3 Yoz Vi
Th () triplets; i ' N
ere are \3 ) triplets; hence, this factor must be raised to the power (3 )
The first correction factor is therefote

L+ 365, + 3E, + Tl VI NIN-DIN-2)
1+ 35, + 35, + 8,



Now it is easy to verify that f-)z SRS TR B s e V-3 Thus, in
(QN)l/N, one has the correction factor

(1 +~‘7‘-ﬁ—2 + 0(V-3)

- )(1/6)(N'1)(N'2) % e(1/3) BEBN

Therefore, in second approximation:
2
£@) = _xT {1 +1og v + (3/2) log —7T“2‘—kT +(1/2) pBy + (1/3) p"'ﬁz} :
h
(VI-51)

In a similar way, one can find the general term, which is

Bm
m+ 1

P
In this way, we find for the pressure the result (VI-39)

df - kT > mp
4 T {1 g Zﬁ pm}' (VI-52)
Tani—

D. Virial Expansion of the Pair Distribution Function

In a similar way as the free energy, the molecular distribution
functions can be expanded in powers of the density. These series were
first given by Mayer and Montroll, and independently by de Boer and
Michels. Van Kampen's method can likewise be applied to this case.
Compare his paper where he derives the virial expansion of log i) I
the supplement of Fisher's book (Ref. 1) the virial expansion of log g(r) is
derived too.

In the following, we shall use the theorem (IV-14) proved before,
that g(r) is (1/2) p times the functional derivative with respect to the pair
potential of the free energy per particle; i.e.,

Cie (7] pféqs(?) g(¥) 47, (VI-53)

We have found [cf. (VI-51)]

o]
2mmkT ﬁm m}
2o gms . E : VI-54
f kT{1+1ogv+(3/2)1og = +l — P (V1-54)

6l
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Hence

6 = kT ) Ly BBy = (1B féqb(r g(7) dF. (VI-55)
)

+

Let us write
(VI-56)

glr) = g (r) + pg®) (x) + p% @) (x) +

Equating the coefficients of p in (VI-55), we see that

XL op, = - XL a[(e‘ﬁ"b(r)_l) aF = 1/zf g () a7,

2

gl0) (r) = ePO(r), (VI-57)

The coefficient of p? is found as follows:

(l/Z)féq;(r) g(l)(r) dr = - k—; 0B, = S 6ffxzf13fzz dt) dr, drs;

f5¢(r)g(1)(r)d? = % fé(blze-‘qu” f13653 ATy drpdrs.

Hence,
e ) = o PO | s el e RHRRE R (VI-58)
where
:
gilrz) = ffufud?; fd?a{l/\z} (VI-59)
From

4

3 3 4 3 4
b = o [ aman 3] 4 o] + R ter. (vr-az)
1 1 2 1 2



we can compute g(z) (r12):

éfflzfz4£34f13 gy .45y = -4BV féd)lze'M)’Z )il o)

where
ajy 3 4
d(ry2) = ff13f24f34 dradry = fdrsd;&{l [}:
1582

<5‘/‘fllfnfzafz‘;f% d;’l---di = fé‘b(rlz) e'ﬁd’(hz) ¥(ry2) dr,

-BV f<5¢(1'1z) e'l5¢(1‘12) {gl(rlz)}z drz,

where

3 4
¥(ry2) = ff13f23f24f34 dradry = fdﬂdi{m};
W2

and

6ff12£13f14fufz4f34 d?l---d?‘i = ‘65V féd)(rlz) e-{3¢>(r12) X(rll) d?lz

where

3 4
X(rz) = ff13f14f23fz4f34 d;sd?‘; = fd?sd?‘:{m}-

1 2

Therefore, if we write

wllE) = e_m(r) {1 + pgy(r) + PPgalr) + }

we have found

B
gir) = fflsfzs ar; = fdg{/\}
1 2

(VI-60)

(vi-61)

(VI-62)

(VI-63)

(VI-64)

(VI-65)

(VI-66)

(VI-67)
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and
ga(r) = @(r) + 2¥(r) + (1/2) gilx) + (1/2) X(r) (V1-68)

N O T

One sees that to find the functions g;(r), gz(r), etc. we have to break the
bonds in f,, B3, etc. From the examples above, it would not be difficult
to find the general rule, i.e., the coefficients of the higher powers of p

in (VI-66).
Remark

If we expand log g(r), that is, if we write

00

log g(r) = -po(r) + Z P™Yn(r), (V1-69)
then one easily verifies that

e = ate) = [ar{ A},

A L (VI-70)
Yalr) = galx) - (1/2) gilx) = 0(x) + 2¥(x) + (1/2) X(x).

E. Computations and Checks on Approximate Expressions for the Pair
Distribution Function

For the simple case of hard spheres, one can compute the first
few of the functions g, (r) in (VI-66);

gi(r) = ffufzz dr;
is very simple; it was first calculated by Kirkwood. One finds (if the
diameter of the spheres is taken to be 1)

b)) = ZTT[[Z =((3/2 ) ni /8] fori s

=005 ; for'r = 2; (VI-71)

IA

2;

gz(r) for hard spheres has also been computed [cf. Nijboer and Van Hove,
Phys. Rev. 85, 777 (1952)]. In particular, X(r) is rather difficult, but it
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proved to be possible to express ®, ¥, and X in terms of elementary
functions. We will not give the results here.

As soon as one knows g(r) toacertainorder in p, the corresponding
virial coefficients can be deduced from it in two alternative ways.

a) We had [cf. (IV-10)]

R . o [ , do
g T O j; gle) e — dr, (V1I-72)

which we derived from the virial theorem. Further,

p L=
—_ = n g
T e (VI-73)
n=2
From these,
i e dg i as(r)
L n-2) 3 49 = 2 3 ' 74
Bn 3kT'/; g e : gp.p () ¥ —— dr.  (VI-74)
For hard spheres,
By = (Zﬂ/3) a7 (L) (VI-75)

i.e., By is given by the value of gp-p at the diameter of the sphere.

b) From the so-called compressibility integral [cf. (1-4)],

dp

1+ 47Tpf(g(r)— 1Y chd = T (a—g)T = Ol (VI-76)
For hard spheres, for example, this leads to
0
By = -(1/8) b° -Wf g(r) ridr (VI-77)
1

(b/4 is the volume of each particle). Using our result for 3g2(r)’- we found
from a as well as from b the exact value of Bs = 0.2.869b Tasiit wa.s com-
puted first by Boltzmann. If we had used some appr'ox1mate expression for
ga(r), the two results obtained from a and b would in general have been
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different. It will be obvious that here we have a method to check approximate
theories for g(r) (cf. the paper cited on p. 64).

As an example, let us consider the Born-Green integral equation
[cf. IV-31)]:

—

Ty

_1 d log g'(rlz) S a¢(_1;lz) -p fa¢(rll) g,(ru) g'(rZJ) d;‘;. (VI—78)
P oL, ory

We write g'(r) because it is an approximation to the exact g(r). Making
the substitution,

g'(x) = o PPy

r)’

we have
ov(riz) _ ‘ﬁ’PV(rlz)fV(ru) e 3‘15(_1:13) o PO(r13)-Bo(ras) a. (VI-79)
5?1 ory

If now one makes the expansion
v(r) = 1 + pgl(r) + plgilx) + ...,

introduces this in (VI-79), and equates coefficients of equal powers of p,
one finds

gi(r) =ff(1'13) f(rz) At = gi(r) (V1-80)

[cf. (VI-67)]; i.e., gi(r) is exact and therefore B; is also exact.
Furthermore,

ga(r) = (1/2) gf(x) + o(r) + 2¥(x) + (1/2) X'(x), (v1i-81)
[cf. (VI-68)] where X' # X, so that g, is given incorrectly. For hard
spheres, one can again evaluate g‘.'a(r) and compare it with g,(r). When
substituted into (VI-74) and (VI-77), gi(r) leads to incorrect and incon-

sistent values of B4. One finds

0.2252b3,

0]

Biv
and

B) 0.3424b%, (Vi-82)

4C



whe.are the ind}ces v and c stand forvirial and compressibility, respectively.
This 'calculatlon can be extended to gj(r) and B} [cf. Nijboer and Fieschi,
Physica 19, 545 (1953)]. The result is

1= 04 75nY,

Bl = ULk
and

B = @10, (VI-83)

The exact value was found from Monte Carlo computations. Similar cal-
culations have been performed for other approximate theories for g(r), in
particular for the so-called hypernetted chain approximation and the
Percus-Yevick equation [cf. Refs. (1) and (7)].

The results are compiled in the following table:

Byy = Bac | Bsv = Bac Byy Bac Bsv Bsc

Exact b (5/8)b? 0.2869b> | 0.2869b> | 0.1103b* | 0.1103b*
Born-Green b (5/8)b* 0.2252b% | 0.3424b3 | 0.0475b* | 0.1335b*
b (5/8)b? 0.4453b> | 0.2092b> | 0.1447b* | 0.0493p*
b (5/8)

Hypernetted chain
b? 0.2500b> | 0.2969b> | 0.0859b* | 0.121b*

Percus-Yevick

One notes that all these approximate theories start to go wrong with
g2(r) (or with By). This, however, does not necessarily mean that these
approximations are bad for liquid densities. In successive terms in the
virial expansion, there may also be many compensations. For a comparison
of exact (computer calculations) and approximate results for high densities,

refer to Fisher's book (p. 315 and following).

Let me conclude by making a few remarks only on the hypernetted
chain equation and the Percus-Yevick equation. It is possible to derive an
exact integral equation for g(r). It contains, however, an infinite series.
If all but the first term in this series are neglected, one obtains the
Percus-Yevick equation. Analogous situations hold for the hypernetted
chain and Born-Green approximations. The Percus-Yevick equation can
also be obtained from a partial summation of graphs that define g(r). In
the Percus-Yevick equation, one sums only a small subset of graphs that

are included in the hypernetted chain, but apparently they sum to a better
hard spheres and for the Lennard-Jones poten-

approximation (at least for
tion is exact in the one-dimensional hard-sphere

tial). The relevant summa

case.
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